Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Robust, scalable and fast bootstrap method for analyzing large scale data (1504.02382v2)

Published 9 Apr 2015 in stat.ME, cs.IR, cs.IT, math.IT, stat.CO, and stat.ML

Abstract: In this paper we address the problem of performing statistical inference for large scale data sets i.e., Big Data. The volume and dimensionality of the data may be so high that it cannot be processed or stored in a single computing node. We propose a scalable, statistically robust and computationally efficient bootstrap method, compatible with distributed processing and storage systems. Bootstrap resamples are constructed with smaller number of distinct data points on multiple disjoint subsets of data, similarly to the bag of little bootstrap method (BLB) [1]. Then significant savings in computation is achieved by avoiding the re-computation of the estimator for each bootstrap sample. Instead, a computationally efficient fixed-point estimation equation is analytically solved via a smart approximation following the Fast and Robust Bootstrap method (FRB) [2]. Our proposed bootstrap method facilitates the use of highly robust statistical methods in analyzing large scale data sets. The favorable statistical properties of the method are established analytically. Numerical examples demonstrate scalability, low complexity and robust statistical performance of the method in analyzing large data sets.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.