Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Tensor machines for learning target-specific polynomial features (1504.01697v1)

Published 7 Apr 2015 in cs.LG and stat.ML

Abstract: Recent years have demonstrated that using random feature maps can significantly decrease the training and testing times of kernel-based algorithms without significantly lowering their accuracy. Regrettably, because random features are target-agnostic, typically thousands of such features are necessary to achieve acceptable accuracies. In this work, we consider the problem of learning a small number of explicit polynomial features. Our approach, named Tensor Machines, finds a parsimonious set of features by optimizing over the hypothesis class introduced by Kar and Karnick for random feature maps in a target-specific manner. Exploiting a natural connection between polynomials and tensors, we provide bounds on the generalization error of Tensor Machines. Empirically, Tensor Machines behave favorably on several real-world datasets compared to other state-of-the-art techniques for learning polynomial features, and deliver significantly more parsimonious models.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube