Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Efficient SDP Inference for Fully-connected CRFs Based on Low-rank Decomposition (1504.01492v1)

Published 7 Apr 2015 in cs.CV, cs.LG, and stat.ML

Abstract: Conditional Random Fields (CRF) have been widely used in a variety of computer vision tasks. Conventional CRFs typically define edges on neighboring image pixels, resulting in a sparse graph such that efficient inference can be performed. However, these CRFs fail to model long-range contextual relationships. Fully-connected CRFs have thus been proposed. While there are efficient approximate inference methods for such CRFs, usually they are sensitive to initialization and make strong assumptions. In this work, we develop an efficient, yet general algorithm for inference on fully-connected CRFs. The algorithm is based on a scalable SDP algorithm and the low- rank approximation of the similarity/kernel matrix. The core of the proposed algorithm is a tailored quasi-Newton method that takes advantage of the low-rank matrix approximation when solving the specialized SDP dual problem. Experiments demonstrate that our method can be applied on fully-connected CRFs that cannot be solved previously, such as pixel-level image co-segmentation.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.