Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding (1504.01255v3)

Published 6 Apr 2015 in stat.ML, cs.CL, and cs.LG

Abstract: This paper presents a new semi-supervised framework with convolutional neural networks (CNNs) for text categorization. Unlike the previous approaches that rely on word embeddings, our method learns embeddings of small text regions from unlabeled data for integration into a supervised CNN. The proposed scheme for embedding learning is based on the idea of two-view semi-supervised learning, which is intended to be useful for the task of interest even though the training is done on unlabeled data. Our models achieve better results than previous approaches on sentiment classification and topic classification tasks.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)