Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding (1504.01255v3)

Published 6 Apr 2015 in stat.ML, cs.CL, and cs.LG

Abstract: This paper presents a new semi-supervised framework with convolutional neural networks (CNNs) for text categorization. Unlike the previous approaches that rely on word embeddings, our method learns embeddings of small text regions from unlabeled data for integration into a supervised CNN. The proposed scheme for embedding learning is based on the idea of two-view semi-supervised learning, which is intended to be useful for the task of interest even though the training is done on unlabeled data. Our models achieve better results than previous approaches on sentiment classification and topic classification tasks.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.