Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bengali to Assamese Statistical Machine Translation using Moses (Corpus Based) (1504.01182v1)

Published 6 Apr 2015 in cs.CL

Abstract: Machine dialect interpretation assumes a real part in encouraging man-machine correspondence and in addition men-men correspondence in NLP. Machine Translation (MT) alludes to utilizing machine to change one dialect to an alternate. Statistical Machine Translation is a type of MT consisting of LLM (LM), Translation Model (TM) and decoder. In this paper, Bengali to Assamese Statistical Machine Translation Model has been created by utilizing Moses. Other translation tools like IRSTLM for LLM and GIZA-PP-V1.0.7 for Translation model are utilized within this framework which is accessible in Linux situations. The purpose of the LM is to encourage fluent output and the purpose of TM is to encourage similarity between input and output, the decoder increases the probability of translated text in target language. A parallel corpus of 17100 sentences in Bengali and Assamese has been utilized for preparing within this framework. Measurable MT procedures have not so far been generally investigated for Indian dialects. It might be intriguing to discover to what degree these models can help the immense continuous MT deliberations in the nation.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.