Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Iterative Concave Rank Approximation for Recovering Low-Rank Matrices (1504.01158v1)

Published 5 Apr 2015 in cs.IT and math.IT

Abstract: In this paper, we propose a new algorithm for recovery of low-rank matrices from compressed linear measurements. The underlying idea of this algorithm is to closely approximate the rank function with a smooth function of singular values, and then minimize the resulting approximation subject to the linear constraints. The accuracy of the approximation is controlled via a scaling parameter $\delta$, where a smaller $\delta$ corresponds to a more accurate fitting. The consequent optimization problem for any finite $\delta$ is nonconvex. Therefore, in order to decrease the risk of ending up in local minima, a series of optimizations is performed, starting with optimizing a rough approximation (a large $\delta$) and followed by successively optimizing finer approximations of the rank with smaller $\delta$'s. To solve the optimization problem for any $\delta > 0$, it is converted to a new program in which the cost is a function of two auxiliary positive semidefinete variables. The paper shows that this new program is concave and applies a majorize-minimize technique to solve it which, in turn, leads to a few convex optimization iterations. This optimization scheme is also equivalent to a reweighted Nuclear Norm Minimization (NNM), where weighting update depends on the used approximating function. For any $\delta > 0$, we derive a necessary and sufficient condition for the exact recovery which are weaker than those corresponding to NNM. On the numerical side, the proposed algorithm is compared to NNM and a reweighted NNM in solving affine rank minimization and matrix completion problems showing its considerable and consistent superiority in terms of success rate, especially, when the number of measurements decreases toward the lower-bound for the unique representation.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.