Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Stable Signal Recovery from Phaseless Measurements (1504.01085v2)

Published 5 Apr 2015 in math.FA, cs.IT, and math.IT

Abstract: The aim of this paper is to study the stability of the $\ell_1$ minimization for the compressive phase retrieval and to extend the instance-optimality in compressed sensing to the real phase retrieval setting. We first show that the $m={\mathcal O}(k\log(N/k))$ measurements is enough to guarantee the $\ell_1$ minimization to recover $k$-sparse signals stably provided the measurement matrix $A$ satisfies the strong RIP property. We second investigate the phaseless instance-optimality with presenting a null space property of the measurement matrix $A$ under which there exists a decoder $\Delta$ so that the phaseless instance-optimality holds. We use the result to study the phaseless instance-optimality for the $\ell_1$ norm. The results build a parallel for compressive phase retrieval with the classical compressive sensing.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.