Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 130 tok/s
Gemini 3.0 Pro 29 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 191 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Stable Signal Recovery from Phaseless Measurements (1504.01085v2)

Published 5 Apr 2015 in math.FA, cs.IT, and math.IT

Abstract: The aim of this paper is to study the stability of the $\ell_1$ minimization for the compressive phase retrieval and to extend the instance-optimality in compressed sensing to the real phase retrieval setting. We first show that the $m={\mathcal O}(k\log(N/k))$ measurements is enough to guarantee the $\ell_1$ minimization to recover $k$-sparse signals stably provided the measurement matrix $A$ satisfies the strong RIP property. We second investigate the phaseless instance-optimality with presenting a null space property of the measurement matrix $A$ under which there exists a decoder $\Delta$ so that the phaseless instance-optimality holds. We use the result to study the phaseless instance-optimality for the $\ell_1$ norm. The results build a parallel for compressive phase retrieval with the classical compressive sensing.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.