Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Risk Bounds for the Majority Vote: From a PAC-Bayesian Analysis to a Learning Algorithm (1503.08329v2)

Published 28 Mar 2015 in stat.ML and cs.LG

Abstract: We propose an extensive analysis of the behavior of majority votes in binary classification. In particular, we introduce a risk bound for majority votes, called the C-bound, that takes into account the average quality of the voters and their average disagreement. We also propose an extensive PAC-Bayesian analysis that shows how the C-bound can be estimated from various observations contained in the training data. The analysis intends to be self-contained and can be used as introductory material to PAC-Bayesian statistical learning theory. It starts from a general PAC-Bayesian perspective and ends with uncommon PAC-Bayesian bounds. Some of these bounds contain no Kullback-Leibler divergence and others allow kernel functions to be used as voters (via the sample compression setting). Finally, out of the analysis, we propose the MinCq learning algorithm that basically minimizes the C-bound. MinCq reduces to a simple quadratic program. Aside from being theoretically grounded, MinCq achieves state-of-the-art performance, as shown in our extensive empirical comparison with both AdaBoost and the Support Vector Machine.

Citations (135)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.