Strong-majority bootstrap percolation on regular graphs with low dissemination threshold (1503.08310v1)
Abstract: Consider the following model of strong-majority bootstrap percolation on a graph. Let r be some positive integer, and p in [0,1]. Initially, every vertex is active with probability p, independently from all other vertices. Then, at every step of the process, each vertex v of degree deg(v) becomes active if at least (deg(v)+r)/2 of its neighbours are active. Given any arbitrarily small p>0 and any integer r, we construct a family of d=d(p,r)-regular graphs such that with high probability all vertices become active in the end. In particular, the case r=1 answers a question and disproves a conjecture of Rapaport, Suchan, Todinca, and Verstraete (Algorithmica, 2011).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.