Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Estimation of Graph Spectrum (1503.08192v1)

Published 27 Mar 2015 in cs.SY and cs.DC

Abstract: In this paper, we develop a two-stage distributed algorithm that enables nodes in a graph to cooperatively estimate the spectrum of a matrix $W$ associated with the graph, which includes the adjacency and Laplacian matrices as special cases. In the first stage, the algorithm uses a discrete-time linear iteration and the Cayley-Hamilton theorem to convert the problem into one of solving a set of linear equations, where each equation is known to a node. In the second stage, if the nodes happen to know that $W$ is cyclic, the algorithm uses a Lyapunov approach to asymptotically solve the equations with an exponential rate of convergence. If they do not know whether $W$ is cyclic, the algorithm uses a random perturbation approach and a structural controllability result to approximately solve the equations with an error that can be made small. Finally, we provide simulation results that illustrate the algorithm.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mu Yang (35 papers)
  2. Choon Yik Tang (8 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.