Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Identifying overlapping communities in social networks using multi-scale local information expansion (1503.08024v1)

Published 27 Mar 2015 in physics.soc-ph and cs.SI

Abstract: Most existing approaches for community detection require complete information of the graph in a specific scale, which is impractical for many social networks. We propose a novel algorithm that does not embrace the universal approach but instead of trying to focus on local social ties and modeling multi-scales of social interactions occurring in those networks. Our method for the first time optimizes the topological entropy of a network and uncovers communities through a novel dynamic system converging to a local minimum by simply updating the membership vector with very low computational complexity. It naturally supports overlapping communities through associating each node with a membership vector which describes node's involvement in each community. This way, in addition to uncover overlapping communities, we can also describe different multi-scale partitions by tuning the characteristic size of modules from the optimal partition. Because of the high efficiency and accuracy of the algorithm, it is feasible to be used for the accurate detection of community structure in real networks.

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.