Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Competitive Distribution Estimation (1503.07940v1)

Published 27 Mar 2015 in cs.IT, cs.DS, cs.LG, math.IT, math.ST, and stat.TH

Abstract: Estimating an unknown distribution from its samples is a fundamental problem in statistics. The common, min-max, formulation of this goal considers the performance of the best estimator over all distributions in a class. It shows that with $n$ samples, distributions over $k$ symbols can be learned to a KL divergence that decreases to zero with the sample size $n$, but grows unboundedly with the alphabet size $k$. Min-max performance can be viewed as regret relative to an oracle that knows the underlying distribution. We consider two natural and modest limits on the oracle's power. One where it knows the underlying distribution only up to symbol permutations, and the other where it knows the exact distribution but is restricted to use natural estimators that assign the same probability to symbols that appeared equally many times in the sample. We show that in both cases the competitive regret reduces to $\min(k/n,\tilde{\mathcal{O}}(1/\sqrt n))$, a quantity upper bounded uniformly for every alphabet size. This shows that distributions can be estimated nearly as well as when they are essentially known in advance, and nearly as well as when they are completely known in advance but need to be estimated via a natural estimator. We also provide an estimator that runs in linear time and incurs competitive regret of $\tilde{\mathcal{O}}(\min(k/n,1/\sqrt n))$, and show that for natural estimators this competitive regret is inevitable. We also demonstrate the effectiveness of competitive estimators using simulations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.