Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Transductive Multi-class and Multi-label Zero-shot Learning (1503.07884v1)

Published 26 Mar 2015 in cs.LG and cs.CV

Abstract: Recently, zero-shot learning (ZSL) has received increasing interest. The key idea underpinning existing ZSL approaches is to exploit knowledge transfer via an intermediate-level semantic representation which is assumed to be shared between the auxiliary and target datasets, and is used to bridge between these domains for knowledge transfer. The semantic representation used in existing approaches varies from visual attributes to semantic word vectors and semantic relatedness. However, the overall pipeline is similar: a projection mapping low-level features to the semantic representation is learned from the auxiliary dataset by either classification or regression models and applied directly to map each instance into the same semantic representation space where a zero-shot classifier is used to recognise the unseen target class instances with a single known 'prototype' of each target class. In this paper we discuss two related lines of work improving the conventional approach: exploiting transductive learning ZSL, and generalising ZSL to the multi-label case.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.