Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Making the Most of Tweet-Inherent Features for Social Spam Detection on Twitter (1503.07405v1)

Published 25 Mar 2015 in cs.IR and cs.SI

Abstract: Social spam produces a great amount of noise on social media services such as Twitter, which reduces the signal-to-noise ratio that both end users and data mining applications observe. Existing techniques on social spam detection have focused primarily on the identification of spam accounts by using extensive historical and network-based data. In this paper we focus on the detection of spam tweets, which optimises the amount of data that needs to be gathered by relying only on tweet-inherent features. This enables the application of the spam detection system to a large set of tweets in a timely fashion, potentially applicable in a real-time or near real-time setting. Using two large hand-labelled datasets of tweets containing spam, we study the suitability of five classification algorithms and four different feature sets to the social spam detection task. Our results show that, by using the limited set of features readily available in a tweet, we can achieve encouraging results which are competitive when compared against existing spammer detection systems that make use of additional, costly user features. Our study is the first that attempts at generalising conclusions on the optimal classifiers and sets of features for social spam detection over different datasets.

Citations (102)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.