Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Isotropically Random Orthogonal Matrices: Performance of LASSO and Minimum Conic Singular Values (1503.07236v1)

Published 24 Mar 2015 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: Recently, the precise performance of the Generalized LASSO algorithm for recovering structured signals from compressed noisy measurements, obtained via i.i.d. Gaussian matrices, has been characterized. The analysis is based on a framework introduced by Stojnic and heavily relies on the use of Gordon's Gaussian min-max theorem (GMT), a comparison principle on Gaussian processes. As a result, corresponding characterizations for other ensembles of measurement matrices have not been developed. In this work, we analyze the corresponding performance of the ensemble of isotropically random orthogonal (i.r.o.) measurements. We consider the constrained version of the Generalized LASSO and derive a sharp characterization of its normalized squared error in the large-system limit. When compared to its Gaussian counterpart, our result analytically confirms the superiority in performance of the i.r.o. ensemble. Our second result, derives an asymptotic lower bound on the minimum conic singular values of i.r.o. matrices. This bound is larger than the corresponding bound on Gaussian matrices. To prove our results we express i.r.o. matrices in terms of Gaussians and show that, with some modifications, the GMT framework is still applicable.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.