Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Web Search Result Clustering based on Cuckoo Search and Consensus Clustering (1503.06609v1)

Published 23 Mar 2015 in cs.IR

Abstract: Clustering of web search result document has emerged as a promising tool for improving retrieval performance of an Information Retrieval (IR) system. Search results often plagued by problems like synonymy, polysemy, high volume etc. Clustering other than resolving these problems also provides the user the easiness to locate his/her desired information. In this paper, a method, called WSRDC-CSCC, is introduced to cluster web search result using cuckoo search meta-heuristic method and Consensus clustering. Cuckoo search provides a solid foundation for consensus clustering. As a local clustering function, k-means technique is used. The final number of cluster is not depended on this k. Consensus clustering finds the natural grouping of the objects. The proposed algorithm is compared to another clustering method which is based on cuckoo search and Bayesian Information Criterion. The experimental results show that proposed algorithm finds the actual number of clusters with great value of precision, recall and F-measure as compared to the other method

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.