Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Deep Transform: Cocktail Party Source Separation via Probabilistic Re-Synthesis (1503.06046v1)

Published 20 Mar 2015 in cs.SD, cs.LG, and cs.NE

Abstract: In cocktail party listening scenarios, the human brain is able to separate competing speech signals. However, the signal processing implemented by the brain to perform cocktail party listening is not well understood. Here, we trained two separate convolutive autoencoder deep neural networks (DNN) to separate monaural and binaural mixtures of two concurrent speech streams. We then used these DNNs as convolutive deep transform (CDT) devices to perform probabilistic re-synthesis. The CDTs operated directly in the time-domain. Our simulations demonstrate that very simple neural networks are capable of exploiting monaural and binaural information available in a cocktail party listening scenario.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.