Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Algorithmic Bayesian Persuasion (1503.05988v3)

Published 20 Mar 2015 in cs.GT

Abstract: Persuasion, defined as the act of exploiting an informational advantage in order to effect the decisions of others, is ubiquitous. Indeed, persuasive communication has been estimated to account for almost a third of all economic activity in the US. This paper examines persuasion through a computational lens, focusing on what is perhaps the most basic and fundamental model in this space: the celebrated Bayesian persuasion model of Kamenica and Gentzkow. Here there are two players, a sender and a receiver. The receiver must take one of a number of actions with a-priori unknown payoff, and the sender has access to additional information regarding the payoffs. The sender can commit to revealing a noisy signal regarding the realization of the payoffs of various actions, and would like to do so as to maximize her own payoff assuming a perfectly rational receiver. We examine the sender's optimization task in three of the most natural input models for this problem, and essentially pin down its computational complexity in each. When the payoff distributions of the different actions are i.i.d. and given explicitly, we exhibit a polynomial-time (exact) algorithm, and a "simple" $(1-1/e)$-approximation algorithm. Our optimal scheme for the i.i.d. setting involves an analogy to auction theory, and makes use of Border's characterization of the space of reduced-forms for single-item auctions. When action payoffs are independent but non-identical with marginal distributions given explicitly, we show that it is #P-hard to compute the optimal expected sender utility. Finally, we consider a general (possibly correlated) joint distribution of action payoffs presented by a black box sampling oracle, and exhibit a fully polynomial-time approximation scheme (FPTAS) with a bi-criteria guarantee. We show that this result is the best possible in the black-box model for information-theoretic reasons.

Citations (139)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.