Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Transfer Learning Approach for Cache-Enabled Wireless Networks (1503.05448v2)

Published 18 Mar 2015 in cs.IT, cs.NI, and math.IT

Abstract: Locally caching contents at the network edge constitutes one of the most disruptive approaches in $5$G wireless networks. Reaping the benefits of edge caching hinges on solving a myriad of challenges such as how, what and when to strategically cache contents subject to storage constraints, traffic load, unknown spatio-temporal traffic demands and data sparsity. Motivated by this, we propose a novel transfer learning-based caching procedure carried out at each small cell base station. This is done by exploiting the rich contextual information (i.e., users' content viewing history, social ties, etc.) extracted from device-to-device (D2D) interactions, referred to as source domain. This prior information is incorporated in the so-called target domain where the goal is to optimally cache strategic contents at the small cells as a function of storage, estimated content popularity, traffic load and backhaul capacity. It is shown that the proposed approach overcomes the notorious data sparsity and cold-start problems, yielding significant gains in terms of users' quality-of-experience (QoE) and backhaul offloading, with gains reaching up to $22\%$ in a setting consisting of four small cell base stations.

Citations (119)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.