Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

GeomRDF: A Geodata Converter with a Fine-Grained Structured Representation of Geometry in the Web (1503.04864v1)

Published 16 Mar 2015 in cs.DB and cs.AI

Abstract: In recent years, with the advent of the web of data, a growing number of national mapping agencies tend to publish their geospatial data as Linked Data. However, differences between traditional GIS data models and Linked Data model can make the publication process more complicated. Besides, it may require, to be done, the setting of several parameters and some expertise in the semantic web technologies. In addition, the use of standards like GeoSPARQL (or ad hoc predicates) is mandatory to perform spatial queries on published geospatial data. In this paper, we present GeomRDF, a tool that helps users to convert spatial data from traditional GIS formats to RDF model easily. It generates geometries represented as GeoSPARQL WKT literal but also as structured geometries that can be exploited by using only the RDF query language, SPARQL. GeomRDF was implemented as a module in the RDF publication platform Datalift. A validation of GeomRDF has been realized against the French administrative units dataset (provided by IGN France).

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.