Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Asymmetric coloring games on incomparability graphs (1503.04748v1)

Published 16 Mar 2015 in math.CO and cs.DM

Abstract: Consider the following game on a graph $G$: Alice and Bob take turns coloring the vertices of $G$ properly from a fixed set of colors; Alice wins when the entire graph has been colored, while Bob wins when some uncolored vertices have been left. The game chromatic number of $G$ is the minimum number of colors that allows Alice to win the game. The game Grundy number of $G$ is defined similarly except that the players color the vertices according to the first-fit rule and they only decide on the order in which it is applied. The $(a,b)$-game chromatic and Grundy numbers are defined likewise except that Alice colors $a$ vertices and Bob colors $b$ vertices in each round. We study the behavior of these parameters for incomparability graphs of posets with bounded width. We conjecture a complete characterization of the pairs $(a,b)$ for which the $(a,b)$-game chromatic and Grundy numbers are bounded in terms of the width of the poset; we prove that it gives a necessary condition and provide some evidence for its sufficiency. We also show that the game chromatic number is not bounded in terms of the Grundy number, which answers a question of Havet and Zhu.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.