Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A More Human Way to Play Computer Chess (1503.04333v5)

Published 14 Mar 2015 in cs.AI

Abstract: This paper suggests a forward-pruning technique for computer chess that uses 'Move Tables', which are like Transposition Tables, but for moves not positions. They use an efficient memory structure and has put the design into the context of long and short-term memories. The long-term memory updates a play path with weight reinforcement, while the short-term memory can be immediately added or removed. With this, 'long branches' can play a short path, before returning to a full search at the resulting leaf nodes. Re-using an earlier search path allows the tree to be forward-pruned, which is known to be dangerous, because it removes part of the search process. Additional checks are therefore made and moves can even be re-added when the search result is unsatisfactory. Automatic feature analysis is now central to the algorithm, where key squares and related squares can be generated automatically and used to guide the search process. Using this analysis, if a search result is inferior, it can re-insert un-played moves that cover these key squares only. On the tactical side, a type of move that the forward-pruning will fail on is recognised and a pattern-based solution to that problem is suggested. This has completed the theory of an earlier paper and resulted in a more human-like approach to searching for a chess move. Tests demonstrate that the obvious blunders associated with forward pruning are no longer present and that it can compete at the top level with regard to playing strength.

Citations (3)

Summary

We haven't generated a summary for this paper yet.