Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Join Processing for Graph Patterns: An Old Dog with New Tricks (1503.04169v2)

Published 13 Mar 2015 in cs.DB and cs.DS

Abstract: Join optimization has been dominated by Selinger-style, pairwise optimizers for decades. But, Selinger-style algorithms are asymptotically suboptimal for applications in graphic analytics. This suboptimality is one of the reasons that many have advocated supplementing relational engines with specialized graph processing engines. Recently, new join algorithms have been discovered that achieve optimal worst-case run times for any join or even so-called beyond worst-case (or instance optimal) run time guarantees for specialized classes of joins. These new algorithms match or improve on those used in specialized graph-processing systems. This paper asks can these new join algorithms allow relational engines to close the performance gap with graph engines? We examine this question for graph-pattern queries or join queries. We find that classical relational databases like Postgres and MonetDB or newer graph databases/stores like Virtuoso and Neo4j may be orders of magnitude slower than these new approaches compared to a fully featured RDBMS, LogicBlox, using these new ideas. Our results demonstrate that an RDBMS with such new algorithms can perform as well as specialized engines like GraphLab -- while retaining a high-level interface. We hope this adds to the ongoing debate of the role of graph accelerators, new graph systems, and relational systems in modern workloads.

Citations (67)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.