Papers
Topics
Authors
Recent
2000 character limit reached

Capacity of Random Channels with Large Alphabets (1503.04108v3)

Published 13 Mar 2015 in cs.IT, math.IT, and math.OC

Abstract: We consider discrete memoryless channels with input alphabet size $n$ and output alphabet size $m$, where $m=$ceil$(\gamma n)$ for some constant $\gamma>0$. The channel transition matrix consists of entries that, before being normalised, are independent and identically distributed nonnegative random variables $V$ and such that $E[(V \log V)2]<\infty$. We prove that in the limit as $n\to \infty$ the capacity of such a channel converges to $Ent(V) / E[V]$ almost surely and in $L2$, where $Ent(V):= E[V\log V]-E[V] \log E[V]$ denotes the entropy of $V$. We further show that, under slightly different model assumptions, the capacity of these random channels converges to this asymptotic value exponentially in $n$. Finally, we present an application in the context of Bayesian optimal experiment design.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.