Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Capacity of Random Channels with Large Alphabets (1503.04108v3)

Published 13 Mar 2015 in cs.IT, math.IT, and math.OC

Abstract: We consider discrete memoryless channels with input alphabet size $n$ and output alphabet size $m$, where $m=$ceil$(\gamma n)$ for some constant $\gamma>0$. The channel transition matrix consists of entries that, before being normalised, are independent and identically distributed nonnegative random variables $V$ and such that $E[(V \log V)2]<\infty$. We prove that in the limit as $n\to \infty$ the capacity of such a channel converges to $Ent(V) / E[V]$ almost surely and in $L2$, where $Ent(V):= E[V\log V]-E[V] \log E[V]$ denotes the entropy of $V$. We further show that, under slightly different model assumptions, the capacity of these random channels converges to this asymptotic value exponentially in $n$. Finally, we present an application in the context of Bayesian optimal experiment design.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.