Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Functional Inverse Regression in an Enlarged Dimension Reduction Space (1503.03673v1)

Published 12 Mar 2015 in math.ST, stat.ML, and stat.TH

Abstract: We consider an enlarged dimension reduction space in functional inverse regression. Our operator and functional analysis based approach facilitates a compact and rigorous formulation of the functional inverse regression problem. It also enables us to expand the possible space where the dimension reduction functions belong. Our formulation provides a unified framework so that the classical notions, such as covariance standardization, Mahalanobis distance, SIR and linear discriminant analysis, can be naturally and smoothly carried out in our enlarged space. This enlarged dimension reduction space also links to the linear discriminant space of Gaussian measures on a separable Hilbert space.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.