Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Switching to Learn (1503.03517v1)

Published 11 Mar 2015 in cs.LG, math.OC, and stat.ML

Abstract: A network of agents attempt to learn some unknown state of the world drawn by nature from a finite set. Agents observe private signals conditioned on the true state, and form beliefs about the unknown state accordingly. Each agent may face an identification problem in the sense that she cannot distinguish the truth in isolation. However, by communicating with each other, agents are able to benefit from side observations to learn the truth collectively. Unlike many distributed algorithms which rely on all-time communication protocols, we propose an efficient method by switching between Bayesian and non-Bayesian regimes. In this model, agents exchange information only when their private signals are not informative enough; thence, by switching between the two regimes, agents efficiently learn the truth using only a few rounds of communications. The proposed algorithm preserves learnability while incurring a lower communication cost. We also verify our theoretical findings by simulation examples.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.