Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 25 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Upper Bounds on the Relative Entropy and Rényi Divergence as a Function of Total Variation Distance for Finite Alphabets (1503.03417v4)

Published 11 Mar 2015 in cs.IT, math.IT, and math.PR

Abstract: A new upper bound on the relative entropy is derived as a function of the total variation distance for probability measures defined on a common finite alphabet. The bound improves a previously reported bound by Csisz\'ar and Talata. It is further extended to an upper bound on the R\'enyi divergence of an arbitrary non-negative order (including $\infty$) as a function of the total variation distance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.