Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Optimal prediction for sparse linear models? Lower bounds for coordinate-separable M-estimators (1503.03188v2)

Published 11 Mar 2015 in math.ST, stat.ML, and stat.TH

Abstract: For the problem of high-dimensional sparse linear regression, it is known that an $\ell_0$-based estimator can achieve a $1/n$ "fast" rate on the prediction error without any conditions on the design matrix, whereas in absence of restrictive conditions on the design matrix, popular polynomial-time methods only guarantee the $1/\sqrt{n}$ "slow" rate. In this paper, we show that the slow rate is intrinsic to a broad class of M-estimators. In particular, for estimators based on minimizing a least-squares cost function together with a (possibly non-convex) coordinate-wise separable regularizer, there is always a "bad" local optimum such that the associated prediction error is lower bounded by a constant multiple of $1/\sqrt{n}$. For convex regularizers, this lower bound applies to all global optima. The theory is applicable to many popular estimators, including convex $\ell_1$-based methods as well as M-estimators based on nonconvex regularizers, including the SCAD penalty or the MCP regularizer. In addition, for a broad class of nonconvex regularizers, we show that the bad local optima are very common, in that a broad class of local minimization algorithms with random initialization will typically converge to a bad solution.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.