Emergent Mind

Optimal prediction for sparse linear models? Lower bounds for coordinate-separable M-estimators

(1503.03188)
Published Mar 11, 2015 in math.ST , stat.ML , and stat.TH

Abstract

For the problem of high-dimensional sparse linear regression, it is known that an $\ell0$-based estimator can achieve a $1/n$ "fast" rate on the prediction error without any conditions on the design matrix, whereas in absence of restrictive conditions on the design matrix, popular polynomial-time methods only guarantee the $1/\sqrt{n}$ "slow" rate. In this paper, we show that the slow rate is intrinsic to a broad class of M-estimators. In particular, for estimators based on minimizing a least-squares cost function together with a (possibly non-convex) coordinate-wise separable regularizer, there is always a "bad" local optimum such that the associated prediction error is lower bounded by a constant multiple of $1/\sqrt{n}$. For convex regularizers, this lower bound applies to all global optima. The theory is applicable to many popular estimators, including convex $\ell1$-based methods as well as M-estimators based on nonconvex regularizers, including the SCAD penalty or the MCP regularizer. In addition, for a broad class of nonconvex regularizers, we show that the bad local optima are very common, in that a broad class of local minimization algorithms with random initialization will typically converge to a bad solution.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.