Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Experimental Estimation of Number of Clusters Based on Cluster Quality (1503.03168v1)

Published 10 Mar 2015 in cs.IR

Abstract: Text Clustering is a text mining technique which divides the given set of text documents into significant clusters. It is used for organizing a huge number of text documents into a well-organized form. In the majority of the clustering algorithms, the number of clusters must be specified apriori, which is a drawback of these algorithms. The aim of this paper is to show experimentally how to determine the number of clusters based on cluster quality. Since partitional clustering algorithms are well-suited for clustering large document datasets, we have confined our analysis to a partitional clustering algorithm.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.