Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Mobile Node Localization via Pareto Optimization: Algorithm and Fundamental Performance Limitations (1503.02878v1)

Published 10 Mar 2015 in cs.IT, cs.RO, math.IT, math.OC, math.ST, and stat.TH

Abstract: Accurate estimation of the position of network nodes is essential, e.g., in localization, geographic routing, and vehicular networks. Unfortunately, typical positioning techniques based on ranging or on velocity and angular measurements are inherently limited. To overcome the limitations of specific positioning techniques, the fusion of multiple and heterogeneous sensor information is an appealing strategy. In this paper, we investigate the fundamental performance of linear fusion of multiple measurements of the position of mobile nodes, and propose a new distributed recursive position estimator. The Cram\'er-Rao lower bounds for the parametric and a-posteriori cases are investigated. The proposed estimator combines information coming from ranging, speed, and angular measurements, which is jointly fused by a Pareto optimization problem where the mean and the variance of the localization error are simultaneously minimized. A distinguished feature of the method is that it assumes a very simple dynamical model of the mobility and therefore it is applicable to a large number of scenarios providing good performance. The main challenge is the characterization of the statistical information needed to model the Fisher information matrix and the Pareto optimization problem. The proposed analysis is validated by Monte Carlo simulations, and the performance is compared to several Kalman-based filters, commonly employed for localization and sensor fusion. Simulation results show that the proposed estimator outperforms the traditional approaches that are based on the extended Kalman filter when no assumption on the model of motion is used. In such a scenario, better performance is achieved by the proposed method, but at the price of an increased computational complexity.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.