Papers
Topics
Authors
Recent
2000 character limit reached

Single stream parallelization of generalized LSTM-like RNNs on a GPU (1503.02852v1)

Published 10 Mar 2015 in cs.NE and cs.LG

Abstract: Recurrent neural networks (RNNs) have shown outstanding performance on processing sequence data. However, they suffer from long training time, which demands parallel implementations of the training procedure. Parallelization of the training algorithms for RNNs are very challenging because internal recurrent paths form dependencies between two different time frames. In this paper, we first propose a generalized graph-based RNN structure that covers the most popular long short-term memory (LSTM) network. Then, we present a parallelization approach that automatically explores parallelisms of arbitrary RNNs by analyzing the graph structure. The experimental results show that the proposed approach shows great speed-up even with a single training stream, and further accelerates the training when combined with multiple parallel training streams.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.