Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Pricing is Hard (1503.02516v1)

Published 9 Mar 2015 in cs.GT

Abstract: We show that computing the revenue-optimal deterministic auction in unit-demand single-buyer Bayesian settings, i.e. the optimal item-pricing, is computationally hard even in single-item settings where the buyer's value distribution is a sum of independently distributed attributes, or multi-item settings where the buyer's values for the items are independent. We also show that it is intractable to optimally price the grand bundle of multiple items for an additive bidder whose values for the items are independent. These difficulties stem from implicit definitions of a value distribution. We provide three instances of how different properties of implicit distributions can lead to intractability: the first is a #P-hardness proof, while the remaining two are reductions from the SQRT-SUM problem of Garey, Graham, and Johnson. While simple pricing schemes can oftentimes approximate the best scheme in revenue, they can have drastically different underlying structure. We argue therefore that either the specification of the input distribution must be highly restricted in format, or it is necessary for the goal to be mere approximation to the optimal scheme's revenue instead of computing properties of the scheme itself.

Citations (19)

Summary

We haven't generated a summary for this paper yet.