Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

One Scan 1-Bit Compressed Sensing (1503.02346v2)

Published 8 Mar 2015 in stat.ME, cs.IT, cs.LG, and math.IT

Abstract: Based on $\alpha$-stable random projections with small $\alpha$, we develop a simple algorithm for compressed sensing (sparse signal recovery) by utilizing only the signs (i.e., 1-bit) of the measurements. Using only 1-bit information of the measurements results in substantial cost reduction in collection, storage, communication, and decoding for compressed sensing. The proposed algorithm is efficient in that the decoding procedure requires only one scan of the coordinates. Our analysis can precisely show that, for a $K$-sparse signal of length $N$, $12.3K\log N/\delta$ measurements (where $\delta$ is the confidence) would be sufficient for recovering the support and the signs of the signal. While the method is very robust against typical measurement noises, we also provide the analysis of the scheme under random flipping of the signs of the measurements. \noindent Compared to the well-known work on 1-bit marginal regression (which can also be viewed as a one-scan method), the proposed algorithm requires orders of magnitude fewer measurements. Compared to 1-bit Iterative Hard Thresholding (IHT) (which is not a one-scan algorithm), our method is still significantly more accurate. Furthermore, the proposed method is reasonably robust against random sign flipping while IHT is known to be very sensitive to this type of noise.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)