Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Asymptotic Optimality of Finite Approximations to Markov Decision Processes with Borel Spaces (1503.02244v3)

Published 8 Mar 2015 in math.OC and cs.SY

Abstract: Calculating optimal policies is known to be computationally difficult for Markov decision processes (MDPs) with Borel state and action spaces. This paper studies finite-state approximations of discrete time Markov decision processes with Borel state and action spaces, for both discounted and average costs criteria. The stationary policies thus obtained are shown to approximate the optimal stationary policy with arbitrary precision under quite general conditions for discounted cost and more restrictive conditions for average cost. For compact-state MDPs, we obtain explicit rate of convergence bounds quantifying how the approximation improves as the size of the approximating finite state space increases. Using information theoretic arguments, the order optimality of the obtained convergence rates is established for a large class of problems. We also show that, as a pre-processing step the action space can also be finitely approximated with sufficiently large number points; thereby, well known algorithms, such as value or policy iteration, Q-learning, etc., can be used to calculate near optimal policies.

Citations (57)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.