Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sequential Posted Price Mechanisms with Correlated Valuations (1503.02200v3)

Published 7 Mar 2015 in cs.GT

Abstract: We study the revenue performance of sequential posted price mechanisms and some natural extensions, for a general setting where the valuations of the buyers are drawn from a correlated distribution. Sequential posted price mechanisms are conceptually simple mechanisms that work by proposing a take-it-or-leave-it offer to each buyer. We apply sequential posted price mechanisms to single-parameter multi-unit settings in which each buyer demands only one item and the mechanism can assign the service to at most k of the buyers. For standard sequential posted price mechanisms, we prove that with the valuation distribution having finite support, no sequential posted price mechanism can extract a constant fraction of the optimal expected revenue, even with unlimited supply. We extend this result to the the case of a continuous valuation distribution when various standard assumptions hold simultaneously. In fact, it turns out that the best fraction of the optimal revenue that is extractable by a sequential posted price mechanism is proportional to ratio of the highest and lowest possible valuation. We prove that for two simple generalizations of these mechanisms, a better revenue performance can be achieved: if the sequential posted price mechanism has for each buyer the option of either proposing an offer or asking the buyer for its valuation, then a Omega(1/max{1,d}) fraction of the optimal revenue can be extracted, where d denotes the degree of dependence of the valuations, ranging from complete independence (d=0) to arbitrary dependence (d=n-1). Moreover, when we generalize the sequential posted price mechanisms further, such that the mechanism has the ability to make a take-it-or-leave-it offer to the i-th buyer that depends on the valuations of all buyers except i's, we prove that a constant fraction (2-sqrt{e})/4~0.088 of the optimal revenue can be always be extracted.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.