Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Robust Mean Square Stability of Open Quantum Stochastic Systems with Hamiltonian Perturbations in a Weyl Quantization Form (1503.02122v1)

Published 7 Mar 2015 in quant-ph, cs.SY, and math.OC

Abstract: This paper is concerned with open quantum systems whose dynamic variables satisfy canonical commutation relations and are governed by quantum stochastic differential equations. The latter are driven by quantum Wiener processes which represent external boson fields. The system-field coupling operators are linear functions of the system variables. The Hamiltonian consists of a nominal quadratic function of the system variables and an uncertain perturbation which is represented in a Weyl quantization form. Assuming that the nominal linear quantum system is stable, we develop sufficient conditions on the perturbation of the Hamiltonian which guarantee robust mean square stability of the perturbed system. Examples are given to illustrate these results for a class of Hamiltonian perturbations in the form of trigonometric polynomials of the system variables.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.