The complexity of dominating set reconfiguration (1503.00833v1)
Abstract: Suppose that we are given two dominating sets $D_s$ and $D_t$ of a graph $G$ whose cardinalities are at most a given threshold $k$. Then, we are asked whether there exists a sequence of dominating sets of $G$ between $D_s$ and $D_t$ such that each dominating set in the sequence is of cardinality at most $k$ and can be obtained from the previous one by either adding or deleting exactly one vertex. This problem is known to be PSPACE-complete in general. In this paper, we study the complexity of this decision problem from the viewpoint of graph classes. We first prove that the problem remains PSPACE-complete even for planar graphs, bounded bandwidth graphs, split graphs, and bipartite graphs. We then give a general scheme to construct linear-time algorithms and show that the problem can be solved in linear time for cographs, trees, and interval graphs. Furthermore, for these tractable cases, we can obtain a desired sequence such that the number of additions and deletions is bounded by $O(n)$, where $n$ is the number of vertices in the input graph.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.