Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The complexity of dominating set reconfiguration (1503.00833v1)

Published 3 Mar 2015 in cs.DM and cs.DS

Abstract: Suppose that we are given two dominating sets $D_s$ and $D_t$ of a graph $G$ whose cardinalities are at most a given threshold $k$. Then, we are asked whether there exists a sequence of dominating sets of $G$ between $D_s$ and $D_t$ such that each dominating set in the sequence is of cardinality at most $k$ and can be obtained from the previous one by either adding or deleting exactly one vertex. This problem is known to be PSPACE-complete in general. In this paper, we study the complexity of this decision problem from the viewpoint of graph classes. We first prove that the problem remains PSPACE-complete even for planar graphs, bounded bandwidth graphs, split graphs, and bipartite graphs. We then give a general scheme to construct linear-time algorithms and show that the problem can be solved in linear time for cographs, trees, and interval graphs. Furthermore, for these tractable cases, we can obtain a desired sequence such that the number of additions and deletions is bounded by $O(n)$, where $n$ is the number of vertices in the input graph.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.