Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

How to Round Subspaces: A New Spectral Clustering Algorithm (1503.00827v5)

Published 3 Mar 2015 in cs.DS

Abstract: A basic problem in spectral clustering is the following. If a solution obtained from the spectral relaxation is close to an integral solution, is it possible to find this integral solution even though they might be in completely different basis? In this paper, we propose a new spectral clustering algorithm. It can recover a $k$-partition such that the subspace corresponding to the span of its indicator vectors is $O(\sqrt{opt})$ close to the original subspace in spectral norm with $opt$ being the minimum possible ($opt \le 1$ always). Moreover our algorithm does not impose any restriction on the cluster sizes. Previously, no algorithm was known which could find a $k$-partition closer than $o(k \cdot opt)$. We present two applications for our algorithm. First one finds a disjoint union of bounded degree expanders which approximate a given graph in spectral norm. The second one is for approximating the sparsest $k$-partition in a graph where each cluster have expansion at most $\phi_k$ provided $\phi_k \le O(\lambda_{k+1})$ where $\lambda_{k+1}$ is the $(k+1){st}$ eigenvalue of Laplacian matrix. This significantly improves upon the previous algorithms, which required $\phi_k \le O(\lambda_{k+1}/k)$.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)