Papers
Topics
Authors
Recent
2000 character limit reached

A Hebbian/Anti-Hebbian Network Derived from Online Non-Negative Matrix Factorization Can Cluster and Discover Sparse Features (1503.00680v1)

Published 2 Mar 2015 in q-bio.NC, cs.NE, and stat.ML

Abstract: Despite our extensive knowledge of biophysical properties of neurons, there is no commonly accepted algorithmic theory of neuronal function. Here we explore the hypothesis that single-layer neuronal networks perform online symmetric nonnegative matrix factorization (SNMF) of the similarity matrix of the streamed data. By starting with the SNMF cost function we derive an online algorithm, which can be implemented by a biologically plausible network with local learning rules. We demonstrate that such network performs soft clustering of the data as well as sparse feature discovery. The derived algorithm replicates many known aspects of sensory anatomy and biophysical properties of neurons including unipolar nature of neuronal activity and synaptic weights, local synaptic plasticity rules and the dependence of learning rate on cumulative neuronal activity. Thus, we make a step towards an algorithmic theory of neuronal function, which should facilitate large-scale neural circuit simulations and biologically inspired artificial intelligence.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.