Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Hebbian/Anti-Hebbian Network Derived from Online Non-Negative Matrix Factorization Can Cluster and Discover Sparse Features (1503.00680v1)

Published 2 Mar 2015 in q-bio.NC, cs.NE, and stat.ML

Abstract: Despite our extensive knowledge of biophysical properties of neurons, there is no commonly accepted algorithmic theory of neuronal function. Here we explore the hypothesis that single-layer neuronal networks perform online symmetric nonnegative matrix factorization (SNMF) of the similarity matrix of the streamed data. By starting with the SNMF cost function we derive an online algorithm, which can be implemented by a biologically plausible network with local learning rules. We demonstrate that such network performs soft clustering of the data as well as sparse feature discovery. The derived algorithm replicates many known aspects of sensory anatomy and biophysical properties of neurons including unipolar nature of neuronal activity and synaptic weights, local synaptic plasticity rules and the dependence of learning rate on cumulative neuronal activity. Thus, we make a step towards an algorithmic theory of neuronal function, which should facilitate large-scale neural circuit simulations and biologically inspired artificial intelligence.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.