Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Simple Spectral Algorithm for Recovering Planted Partitions (1503.00423v4)

Published 2 Mar 2015 in cs.DS and cs.DM

Abstract: In this paper, we consider the planted partition model, in which $n = ks$ vertices of a random graph are partitioned into $k$ "clusters," each of size $s$. Edges between vertices in the same cluster and different clusters are included with constant probability $p$ and $q$, respectively (where $0 \le q < p \le 1$). We give an efficient algorithm that, with high probability, recovers the clusters as long as the cluster sizes are are least $\Omega(\sqrt{n})$. Informally, our algorithm constructs the projection operator onto the dominant $k$-dimensional eigenspace of the graph's adjacency matrix and uses it to recover one cluster at a time. To our knowledge, our algorithm is the first purely spectral algorithm which runs in polynomial time and works even when $s = \Theta(\sqrt n)$, though there have been several non-spectral algorithms which accomplish this. Our algorithm is also among the simplest of these spectral algorithms, and its proof of correctness illustrates the usefulness of the Cauchy integral formula in this domain.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.