Papers
Topics
Authors
Recent
2000 character limit reached

A Simple Spectral Algorithm for Recovering Planted Partitions (1503.00423v4)

Published 2 Mar 2015 in cs.DS and cs.DM

Abstract: In this paper, we consider the planted partition model, in which $n = ks$ vertices of a random graph are partitioned into $k$ "clusters," each of size $s$. Edges between vertices in the same cluster and different clusters are included with constant probability $p$ and $q$, respectively (where $0 \le q < p \le 1$). We give an efficient algorithm that, with high probability, recovers the clusters as long as the cluster sizes are are least $\Omega(\sqrt{n})$. Informally, our algorithm constructs the projection operator onto the dominant $k$-dimensional eigenspace of the graph's adjacency matrix and uses it to recover one cluster at a time. To our knowledge, our algorithm is the first purely spectral algorithm which runs in polynomial time and works even when $s = \Theta(\sqrt n)$, though there have been several non-spectral algorithms which accomplish this. Our algorithm is also among the simplest of these spectral algorithms, and its proof of correctness illustrates the usefulness of the Cauchy integral formula in this domain.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.