Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sparse Approximation of a Kernel Mean (1503.00323v1)

Published 1 Mar 2015 in stat.ML and cs.LG

Abstract: Kernel means are frequently used to represent probability distributions in machine learning problems. In particular, the well known kernel density estimator and the kernel mean embedding both have the form of a kernel mean. Unfortunately, kernel means are faced with scalability issues. A single point evaluation of the kernel density estimator, for example, requires a computation time linear in the training sample size. To address this challenge, we present a method to efficiently construct a sparse approximation of a kernel mean. We do so by first establishing an incoherence-based bound on the approximation error, and then noticing that, for the case of radial kernels, the bound can be minimized by solving the $k$-center problem. The outcome is a linear time construction of a sparse kernel mean, which also lends itself naturally to an automatic sparsity selection scheme. We show the computational gains of our method by looking at three problems involving kernel means: Euclidean embedding of distributions, class proportion estimation, and clustering using the mean-shift algorithm.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.