Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Approximation of a Kernel Mean (1503.00323v1)

Published 1 Mar 2015 in stat.ML and cs.LG

Abstract: Kernel means are frequently used to represent probability distributions in machine learning problems. In particular, the well known kernel density estimator and the kernel mean embedding both have the form of a kernel mean. Unfortunately, kernel means are faced with scalability issues. A single point evaluation of the kernel density estimator, for example, requires a computation time linear in the training sample size. To address this challenge, we present a method to efficiently construct a sparse approximation of a kernel mean. We do so by first establishing an incoherence-based bound on the approximation error, and then noticing that, for the case of radial kernels, the bound can be minimized by solving the $k$-center problem. The outcome is a linear time construction of a sparse kernel mean, which also lends itself naturally to an automatic sparsity selection scheme. We show the computational gains of our method by looking at three problems involving kernel means: Euclidean embedding of distributions, class proportion estimation, and clustering using the mean-shift algorithm.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. E. Cruz Cortés (1 paper)
  2. C. Scott (1 paper)
Citations (18)

Summary

We haven't generated a summary for this paper yet.