Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Author Name Disambiguation by Using Deep Neural Network (1502.08030v2)

Published 27 Feb 2015 in cs.DL, cs.CL, and cs.LG

Abstract: Author name ambiguity decreases the quality and reliability of information retrieved from digital libraries. Existing methods have tried to solve this problem by predefining a feature set based on expert's knowledge for a specific dataset. In this paper, we propose a new approach which uses deep neural network to learn features automatically from data. Additionally, we propose the general system architecture for author name disambiguation on any dataset. In this research, we evaluate the proposed method on a dataset containing Vietnamese author names. The results show that this method significantly outperforms other methods that use predefined feature set. The proposed method achieves 99.31% in terms of accuracy. Prediction error rate decreases from 1.83% to 0.69%, i.e., it decreases by 1.14%, or 62.3% relatively compared with other methods that use predefined feature set (Table 3).

Citations (55)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.