Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Rényi generalizations of quantum information measures (1502.07977v1)

Published 27 Feb 2015 in quant-ph, cs.IT, hep-th, math-ph, math.IT, and math.MP

Abstract: Quantum information measures such as the entropy and the mutual information find applications in physics, e.g., as correlation measures. Generalizing such measures based on the R\'enyi entropies is expected to enhance their scope in applications. We prescribe R\'enyi generalizations for any quantum information measure which consists of a linear combination of von Neumann entropies with coefficients chosen from the set {-1,0,1}. As examples, we describe R\'enyi generalizations of the conditional quantum mutual information, some quantum multipartite information measures, and the topological entanglement entropy. Among these, we discuss the various properties of the R\'enyi conditional quantum mutual information and sketch some potential applications. We conjecture that the proposed R\'enyi conditional quantum mutual informations are monotone increasing in the R\'enyi parameter, and we have proofs of this conjecture for some special cases.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.