Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Representative Selection in Non Metric Datasets (1502.07428v2)

Published 26 Feb 2015 in cs.AI

Abstract: This paper considers the problem of representative selection: choosing a subset of data points from a dataset that best represents its overall set of elements. This subset needs to inherently reflect the type of information contained in the entire set, while minimizing redundancy. For such purposes, clustering may seem like a natural approach. However, existing clustering methods are not ideally suited for representative selection, especially when dealing with non-metric data, where only a pairwise similarity measure exists. In this paper we propose $\delta$-medoids, a novel approach that can be viewed as an extension to the $k$-medoids algorithm and is specifically suited for sample representative selection from non-metric data. We empirically validate $\delta$-medoids in two domains, namely music analysis and motion analysis. We also show some theoretical bounds on the performance of $\delta$-medoids and the hardness of representative selection in general.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.