Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Transformation of basic probability assignments to probabilities based on a new entropy measure (1502.06956v1)

Published 24 Feb 2015 in cs.AI

Abstract: Dempster-Shafer evidence theory is an efficient mathematical tool to deal with uncertain information. In that theory, basic probability assignment (BPA) is the basic element for the expression and inference of uncertainty. Decision-making based on BPA is still an open issue in Dempster-Shafer evidence theory. In this paper, a novel approach of transforming basic probability assignments to probabilities is proposed based on Deng entropy which is a new measure for the uncertainty of BPA. The principle of the proposed method is to minimize the difference of uncertainties involving in the given BPA and obtained probability distribution. Numerical examples are given to show the proposed approach.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube