Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Scalable Variational Inference in Log-supermodular Models (1502.06531v2)

Published 23 Feb 2015 in cs.LG and stat.ML

Abstract: We consider the problem of approximate Bayesian inference in log-supermodular models. These models encompass regular pairwise MRFs with binary variables, but allow to capture high-order interactions, which are intractable for existing approximate inference techniques such as belief propagation, mean field, and variants. We show that a recently proposed variational approach to inference in log-supermodular models -L-FIELD- reduces to the widely-studied minimum norm problem for submodular minimization. This insight allows to leverage powerful existing tools, and hence to solve the variational problem orders of magnitude more efficiently than previously possible. We then provide another natural interpretation of L-FIELD, demonstrating that it exactly minimizes a specific type of R\'enyi divergence measure. This insight sheds light on the nature of the variational approximations produced by L-FIELD. Furthermore, we show how to perform parallel inference as message passing in a suitable factor graph at a linear convergence rate, without having to sum up over all the configurations of the factor. Finally, we apply our approach to a challenging image segmentation task. Our experiments confirm scalability of our approach, high quality of the marginals, and the benefit of incorporating higher-order potentials.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.