Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

New separation theorems and sub-exponential time algorithms for packing and piercing of fat objects (1502.06176v1)

Published 22 Feb 2015 in cs.CG

Abstract: For $\cal C$ a collection of $n$ objects in $Rd$, let the packing and piercing numbers of $\cal C$, denoted by $Pack({\cal C})$, and $Pierce({\cal C})$, respectively, be the largest number of pairwise disjoint objects in ${\cal C}$, and the smallest number of points in $Rd$ that are common to all elements of ${\cal C}$, respectively. When elements of $\cal C$ are fat objects of arbitrary sizes, we derive sub-exponential time algorithms for the NP-hard problems of computing ${Pack}({\cal C})$ and $Pierce({\cal C})$, respectively, that run in $n{O_d({{Pack}({\cal C})}{d-1\over d})}$ and $n{O_d({{Pierce}({\cal C})}{d-1\over d})}$ time, respectively, and $O(n\log n)$ storage. Our main tool which is interesting in its own way, is a new separation theorem. The algorithms readily give rise to polynomial time approximation schemes (PTAS) that run in $n{O({({1\over\epsilon})}{d-1})}$ time and $O(n\log n)$ storage. The results favorably compare with many related best known results. Specifically, our separation theorem significantly improves the splitting ratio of the previous result of Chan, whereas, the sub-exponential time algorithms significantly improve upon the running times of very recent algorithms of Fox and Pach for packing of spheres.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)