Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning with Square Loss: Localization through Offset Rademacher Complexity (1502.06134v3)

Published 21 Feb 2015 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: We consider regression with square loss and general classes of functions without the boundedness assumption. We introduce a notion of offset Rademacher complexity that provides a transparent way to study localization both in expectation and in high probability. For any (possibly non-convex) class, the excess loss of a two-step estimator is shown to be upper bounded by this offset complexity through a novel geometric inequality. In the convex case, the estimator reduces to an empirical risk minimizer. The method recovers the results of \citep{RakSriTsy15} for the bounded case while also providing guarantees without the boundedness assumption.

Citations (67)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube