Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Classification and Bayesian Optimization for Likelihood-Free Inference (1502.05503v1)

Published 19 Feb 2015 in stat.CO, stat.ME, and stat.ML

Abstract: Some statistical models are specified via a data generating process for which the likelihood function cannot be computed in closed form. Standard likelihood-based inference is then not feasible but the model parameters can be inferred by finding the values which yield simulated data that resemble the observed data. This approach faces at least two major difficulties: The first difficulty is the choice of the discrepancy measure which is used to judge whether the simulated data resemble the observed data. The second difficulty is the computationally efficient identification of regions in the parameter space where the discrepancy is low. We give here an introduction to our recent work where we tackle the two difficulties through classification and Bayesian optimization.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.