Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Matched Multiuser Gaussian Source-Channel Communications via Uncoded Schemes (1502.05428v2)

Published 18 Feb 2015 in cs.IT and math.IT

Abstract: We investigate whether uncoded schemes are optimal for Gaussian sources on multiuser Gaussian channels. Particularly, we consider two problems: the first is to send correlated Gaussian sources on a Gaussian broadcast channel where each receiver is interested in reconstructing only one source component (or one specific linear function of the sources) under the mean squared error distortion measure; the second is to send correlated Gaussian sources on a Gaussian multiple-access channel, where each transmitter observes a noisy combination of the source, and the receiver wishes to reconstruct the individual source components (or individual linear functions) under the mean squared error distortion measure. It is shown that when the channel parameters match certain general conditions, the induced distortion tuples are on the boundary of the achievable distortion region, and thus optimal. Instead of following the conventional approach of attempting to characterize the achievable distortion region, we ask the question whether and how a match can be effectively determined. This decision problem formulation helps to circumvent the difficult optimization problem often embedded in region characterization problems, and it also leads us to focus on the critical conditions in the outer bounds that make the inequalities become equalities, which effectively decouple the overall problem into several simpler sub-problems. Optimality results previously unknown in the literature are obtained using this novel approach. As a byproduct of the investigation, novel outer bounds are derived for these two problems.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube